Variational principle for subadditive sequence of potentials in bundle RDS

نویسندگان

  • Xianfeng Ma
  • Ercai Chen
چکیده

The topological pressure is defined for subadditive sequence of potentials in bundle random dynamical systems. A variational principle for the topological pressure is set up in a very weak condition. The result may have some applications in the study of multifractal analysis for random version of nonconformal dynamical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Topological Pressure of Random Bundle Transformations in Sub-additive Case

In this paper, we define the topological pressure for subadditive potentials via separated sets in random dynamical systems and we give a proof of the relativized variational principle for the topological pressure.

متن کامل

Relative local variational principles for subadditive potentials

We prove two relative local variational principles of topological pressure functions P (T,F ,U , y) and P (T,F ,U|Y ) for a given factor map π, an open cover U and a subadditive sequence of real-valued continuous functions F . By proving the upper semi-continuity and affinity of the entropy maps h{·}(T,U | Y ) and h+{·}(T,U | Y ) on the space of all invariant Borel probability measures, we show...

متن کامل

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

Pre-image Variational Principle for Bundle Random Dynamical Systems

The pre-image topological pressure is defined for bundle random dynamical systems. A variational principle for it has also been given.

متن کامل

Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory

The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009